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Abstract

The stability of linearly viscoelastic ~exible shallow hyperbolic paraboloid shell is analysed under trans!
verse load[ Allowances are made for geometrical nonlinearity and initial imperfections of the surface shape[
By application of the method of _nite di}erences with respect to geometrical variables and the method of
di}erentiation with respect to a parameter "time# the solution for the system of equilibrium non!linear
integro!di}erential equations is reduced to Cauchy|s problem which can be solved numerically[ The critical
time was shown to depend on the load\ curvature\ initial imperfections and edge elements compressibility[
Critical loads for an outlying time moment are determined[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

Nomenclature

a half!span of shell "Fig[ 0#
Ab cross!sectional areas for edge element
D bending sti}ness "� Eh2:01"0−n1##
E\ n instantaneous elastic modulus and Poisson|s ratio for shell
Eb Young|s modulus for edge element
f half!rise of shell in the z!axis direction
h shell thickness
k01 curvature of middle surface "� f:a1#
kÞ01 3k01a

1:h
K membrane sti}ness "� Eh:"0−n1##
Mx\ My\ Mxy moments per unit of length
Nx\ Ny\ Nxy membrane forces per unit of length
q uniformly distributed transverse load
q¹ 05qa3:Eh3

0 Permanent address ] 5b:48 Tereshkova St\ Nizhni Novgorod 592970\ Russia[
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q¹cr critical load parameter for an elastic shell
q¹�

cr critical load parameter for a viscoelastic shell at an outlying time moment
R"t−t# relaxation function for shell
t\ t time "t ¾ t#
tcr critical time
u\ v\ w components of displacement at middle surfaces in the x!\ y!\ z!directions\ respec!

tively "positive in the co!ordinate axes direction#
u¹\ v¹\ w¹ ua:h1\ va:h1\ w:h
w9 de~ection at shell centre
w¹ 9 w9:h
wi\ wia initial de~ection and its amplitude
w¹ i\ w¹ ia wi:h\ wia:h
x\ y\ z Cartesian co!ordinates
" #\x^ " #\y etc[ partial derivatives with respect to x or y\ etc[

Greek symbols
a0 05"0¦n# EbAb:Eha
ob longitudinal deformation in the edge element
ox\ oy\ oxy middle surface strains
93 biharmonic operator
n0\ n1 "0−n#:1\ "0¦n#:1

0[ Introduction

Shallow hyperbolic paraboloid shells "hypars# are used in various engineering _elds\ for example
in civil engineering[ The results of geometric non!linear stability analysis of an elastic ~exible
shallow hyperbolic paraboloid shell have been reported by Ishakov "0882#[ The present paper is
dedicated to the problem of geometric non!linear stability in creep of the same type of shell made
of linearly viscoelastic material[ The problem of stability of viscoelastic shells has long been of
interest to researchers[ In Arutynyan et al[ "0876#\ Kovarik "0876# they presented excellent reviews
of studies concerning this problem[ However\ there are only a few researchers\ which are lead up
to numerical result[ Among the published works we could not _nd any papers treating hypar!
shells speci_cally[ In this work prominence is given to the analysis of behaviour of a ~exible shallow
viscoelastic hypar!shell during the _nite time!interval including the half!in_nite interval[ The
critical time is determined according to Ho}|s creep buckling criterion "see Ho}\ 0845#\ i[e[ on the
assumption that the velocity of the shell de~ection becomes in_nitely large[ We have considered
the relationship between the critical time and load\ surface curvature and initial imperfection of
the shell shape\ and determined the boundaries of stability for an outlying time moment[

First\ the problem is formulated as the system of three non!linear integro!di}erential equations
of equilibrium in terms of displacements[ Then\ by means of _nite di}erence approximation with
respect to geometrical variables it is reduced to the system of non!linear Volterra integral equations
in nodal displacements[ To provide a numerical solution to the system of non!linear integral
equations we make use of the method of di}erentiation with respect to a parameter "time# which
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reduces the solution to the Cauchy|s problem[ This method was _rst proposed by Davidenko
"0842# for solving the systems of non!linear equations[ Later on it was applied in a number of
works "mainly in the USSR#\ including the one mentioned above "Ishakov\ 0882# to solution of
geometrically non!linear problems pertaining to the theory of elastic plates and shells[ This method
favourably di}ers from other methods due to simplicity of implementation and possibility easily
to pass through limit points of equilibrium path by change of the driving parameter "see e[g[
Matevosyan\ 0863^ Ishakov\ 0882#[ In the present paper\ this method is extended to the solution
of geometrically non!linear problems of stability of viscoelastic shell[

1[ Statement of the problem and governing equations

Consider a ~exible shallow hyperbolic paraboloid shell in the quadratic plane with the sizes of
sides represented by 1a "Fig[ 0#[ The origin of the co!ordinates coincides with the plane centre[ In
the system of co!ordinates x\ y\ z the ideal middle surface of the shell is described by the equation
z � k01xy[ The surface curvature k01 is constant at all points[

The shell is made of a linearly viscoelastic material with bounded creep that is damped in time[
Among such materials are concrete\ certain types of polymers\ etc[ The material of the shell is
assumed to be non!ageing[ It means that its instantaneous elastic modulus is independent of time\
i[e[ it remains constant[ Following Arutynyan "0841# "see also Olszak and Sawczuk\ 0856# it is also
assumed that the coe.cients of transverse elastic deformation and transverse creep deformation are
equal to each other and constant in time\ i[e[ n"t# � nc"t\ t# � n � const[ This assumption is used
often with a research of thin viscoelastic shells "see e[g[ Deak\ 0861#\ as a change of transverse
deformation coe.cient in~uences behaviour of a shell a little[ The material of the shell is linearly
elastic under instantaneous loading[

Fig[ 0[ Hypar!shell geometry[
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At the rectilinear boundaries the shell is strengthened with elastic edge elements having constant
extensional sti}ness EbAb[ In other respects\ the shell is considered to be simply supported at the
boundary[ It is assumed that the shell edges can curve freely in the boundary plane and turn
normally to the boundary "i[e[ the horizontal bending and torsional sti}nesses of the edge elements
are equal to zero#[ De~ections on the contour are equal to zero[ The lower corners of the shell
remain undisplaced[

The shell is subjected to the uniformly distributed transverse load q[ The load is considered
positive if it acts in the z!axis direction[ The law of time loading is taken as a single!stage one[ It
means that the time count starts from the moment t � 9\ when the shell is suddenly subjected to a
distributed load of q intensity\ which is then maintained at a constant level[ With t ³ 9 the shell is
considered non!loaded[ The problem is solved in a quasi!static setting\ i[e[\ without regard for
inertia forces[ Consideration is given to symmetrical forms of equilibrium[

In the present paper\ to obtain governing equations we follow the classical scheme based on
Kirchho}ÐLove hypotheses[ We also take into account the assumptions of the shallow shell
theory\ geometrical non!linearity and presence of geometrical initial imperfections with initial
de~ections wi[ The components of middle surface strains are expressed through components
of displacements according to KarmanÐMarguerre geometrically non!linear theory "see e[g[
Timoshenko and Woinowsky!Krieger\ 0848^ Donnell\ 0865#[ The stressÐstrain dependences for
the shell are given in Volterra integral form of linearly viscoelastic theory "see e[g[ Bland\
0859#[ The system of three non!linear integro!di}erential equations of equilibrium in terms of
displacements for a viscoelastic ~exible shallow hypar!shell with initial deviations wi from the
ideal shape is expressed as follows]

u"t#\xx¦n0u"t#\yy¦n1v"t#\xy−1n0k01w"t#\y¦w"t#\x ðw"t#\xx¦wi\xxŁ

¦n0w"t#\x ðw"t#\yy¦wi\yyŁ¦n1w"t#\y ðw"t#\xy¦wi\xyŁ¦ðw"t#\xx¦n0w"t#\yyŁwi\x¦n1w"t#\xywi\y

� g
t

9

"u"t#\xx¦n0u"t#\yy¦n1v"t#\xy−1n0k01w"t#\y¦w"t#\x ðw"t#\xx¦wi\xxŁ

¦n0w"t#\x ðw"t#\yy¦wi\yyŁ¦n1w"t#\y ðw"t#\xy¦wi\xyŁ¦ðw"t#\xx

¦n0w"t#\yyŁwi\x¦n1w"t#\xywi\y#R"t−t# dt^

v"t#\yy¦n0v"t#\xx¦n1u"t#\xy−1n0k01w"t#\x¦w"t#\y ðw"t#\yy¦wi\yyŁ

¦n0w"t#\y ðw"t#\xx¦wi\xxŁ¦n1w"t#\x ðw"t#\xy¦wi\xyŁ¦ðw"t#\yy¦n0w"t#\xxŁwi\y¦n1w"t#\xywi\x

� g
t

9

"v"t#\yy¦n0v"t#\xx¦n1u"t#\xy−1n0k01w"t#\x¦w"t#\y ðw"t#\yy¦wi\yyŁ

¦n0w"t#\y ðw"t#\xx¦wi\xxŁ¦n1w"t#\x ðw"t#\xy¦wi\xyŁ¦ðw"t#\yy

¦n0w"t#\xxŁwi\y¦n1w"t#\xywi\x#R"t−t# dt^ "0#
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D93w"t#−K 6ð w"t#\xx¦wi\xxŁ W $u"t#\x¦
0
1
"w"t#\x#1¦w"t#\xwi\x%¦n $v"t#\y

¦
0
1

"w"t#\y#1¦w"t#\ywi\y%w¦ðw"t#\yy¦wi\yyŁ W $v"t#\y¦
0
1
"w"t#\y#1¦w"t#\ywi\y%

¦n $u"t#\x¦
0
1
"w"t#\x#1¦w"t#\xwi\x%w¦1n0 ðk01¦w"t#\xy¦wi\xyŁðu"t#\y¦v"t#\x

−1k01w"t#¦w"t#\xw"t#\y¦w"t#\xwi\y¦w"t#\ywi\xŁ7−q

� Dg
t

9

93w"t#R"t−t# dt−K 6ðw"t#\xx¦wi\xxŁ g
t

9 W $u"t#\x¦
0
1
"w"t#\x#1

¦w"t#\xwi\x%¦n $v"t#\y¦
0
1
"w"t#\y#1¦w"t#\ywi\y%wR"t−t# dt

¦ðw"t#\yy¦wi\yyŁ g
t

9 W $v"t#\y¦
0
1
"w"t#\y#1¦w"t#\ywi\y%¦n $u"t#\x¦

0
1
"w"t#\x#1

¦w"t#\xwi\x%wR"t−t# dt¦1n0 ðk01¦w"t#\xy¦wi\xyŁ g
t

9

ð u"t#\y¦v"t#\x

−1k01w"t#¦w"t#\xw"t#\y¦w"t#\xwi\y¦w"t#\ywi\xŁR"t−t# dt7[
All the displacements\ deformations\ internal forces and moments are functions of geometrical

co!ordinates x\ y and time t[ Here in eqns "0# and further on\ to make the expression shorter\ they
are given as functions of time t "or t# only\ dependence on co!ordinates x and y being implicit[
Initial de~ection wi is dependent on co!ordinates x and y\ and is not a function of time[ In eqns
"0# the relaxation function R"t−t# is dependent on di}erence t−t only\ as the material is assumed
to be non!ageing[ For materials with bounded\ damped creep the main requirement to be met by
the relaxation function is that its integral\ within the limits "9\ t# should have a _nite value\ even
with t : �[ Otherwise the relaxation function can be of any experimentally con_rmed form[ For
the moment of application of external load t � 9 the integral members in eqns "0# turn into zero[
In this case the system of non!linear integro!di}erential eqns "0# turns into a system of non!
linear di}erential equations of equilibrium in displacements for the elastic!instantaneous problem
"Ishakov\ 0882#[

According to the shell supporting conditions on the contour described above the boundary
conditions at the rectilinear edges can be given in the following form]

at x � 2a] w"t# � 9^ Mx"t# � 9^ Nx"t# � 9^ oy"t# � ob"t#^ "1a#

at y � 2a] w"t# � 9^ My"t# � 9^ Ny"t# � 9^ ox"t# � ob"t#[ "1b#
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The fourth couple of boundary conditions "1a\ b# express the joint deformation conditions of
the viscoelastic shell and its elastic edge elements[ The boundary conditions "1a\ b# in terms of
displacements are expressed as follows]

at x � 2a]

w"t# � 9^ w"t#\xx � 9^ u"t#\x¦nv"t#\y¦
0
1
"w"t#\x#1¦w"t#\xwi\x � 9^

v"t#\yy � 2Kn0 6u"t#\y¦v"t#\x−g
t

9

ðu"t#\y¦v"t#\xŁR"t−t# dt7>"EbAb#^ "2a#

at y � 2a]

w"t# � 9^ w"t#\yy � 9^ v"t#\y¦nu"t#\x¦
0
1
"w"t#\y#1¦w"t#\ywi\y � 9^

u"t#\xx � 2Kn0 6u"t#\y¦v"t#\x−g
t

9

ðu"t#\y¦v"t#\xŁR"t−t# dt7>"EbAb#[ "2b#

The availability of integral member in the boundary conditions causes redistribution of stresses
in time owing to creep[ At t � 9 the above written boundary conditions "2a# and "2b# on the sides
x � 2a and y � 2a coincide with respective boundary conditions of the elastic!instantaneous
problem "Ishakov\ 0882#[

Similar conditions at the corners are]

upper corners x � a"−a#\ y � −a"a#]

w"t# � 9^ u"t#\x � v"t#\y � w"t#\x � w"t#\y � 9^

lower corners x � y � a"−a#]

u"t# � v"t# � w"t# � 9^ w"t#\x � w"t#\y � 9[

Conditions u"t#\y � v"t#\x � 9 resulting from the edge element continuity must be met at all the
corners[

2[ Method of solution

For numerical solution of the problem the non!linear integro!di}erential eqns "0#\ boundary "2#
and corner conditions can be written in _nite di}erences with respect to geometrical variables x\ y
with the order of error O"l1#[ The di}erence interval is l � 1a:7[ The previous calculations
"Ishakov\ 0882# have shown that such grid "7×7# provides a su.ciently accurate solution[ Further
re_nement of the mesh makes the calculation too complicated without signi_cant improvement of
its accuracy[ Derivatives with respect to variables x\ y are approximated by central di}erences[
One!sided di}erences are used only for the corner points and for approximation of derivatives of
initial de~ection functions in the equations for the points on the contour and in the boundary
conditions[ Since this study covers only symmetrical forms of equilibrium\ the di}erence equations
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are written only for nodes of the gird on a quarter of the shell _eld between diagonals x � y and
x � −y "Fig[ 0#[

After substituting the _nite di}erences for the derivatives with respect to variables x and y in
eqns "0# we obtain\ for the grid nodes under consideration\ a system of non!linear Volterra integral
equations in which nodal displacements u\ v\ w as functions of time are unknowns[ The boundary
and corner conditions are satis_ed here in a conventional way[ With introduction of dimensionless
values u¹\ v¹\ w¹ \ w¹ i\ k¹ 01\ q¹ the integral equations are transformed to the dimensionless form[ The
system of integral equations incorporates 44 equations\ 28 of them being obtained from the _rst
and the second eqns "0# and 05 from the third one[ The quantity of unknown nodal displacements
is equal to 44\ respectively[

Let us denote the dimensionless nodal displacement values as xk "k � 0\ 1\ [ [ [ \ 44#] x0\ x1\ [ [ [ \
x28*tangential displacements u¹\ v¹^ x39\ x30\ [ [ [ \ x44*normal displacements w¹ [ In actual and previous
states all the variables xk are unknown functions of time t or t\ respectively[ Thus\ in actual state
they are] x0 � x0"t#\ x1 � x1"t#\ [ [ [ \ x44 � x44"t#[ The domain of these functions is 9 ¾ t\ t ³ tcr[

In an implicit form\ the system of non!linear integral equations can be written as]

Fi ðx0"t#\ x1"t#\ [ [ [ \ x44"t#^ q¹Ł � Pi"t#\ "i � 0\ 1\ [ [ [ \ 44#[ "3#

Left!hand sides Fi of integral eqns "3# corresponding to those of eqns "0# are algebraic poly!
nomials\ up to the third degree inclusive\ in dimensionless nodal displacements[ Their right!hand
sides Pi incorporating integrals with respect to time can be written in a generalized form as]

P "0#
i "t# � g

t

9

fi0"t#R"t−t# dt\ "i � 0\ 1\ [ [ [ \ 28#^

P "1#
i "t# � g

t

9

fi1"t#R"t−t# dt−0\ 4 s
4

j�2

fij"t# g
t

9

fij"t#R"t−t# dt\ "i � 39\ 30\ [ [ [ \ 44#[ "4#

Here i � number of integral equation[
Expressions P "0#

i "t# are obtained from the right!hand side of the _rst and second equations of
system "0# and expressions P "1#

i "t# are from the third one[ Functions fi0\ fi1\ fij\ fij are algebraic
polynomials in dimensionless nodal displacements]

fij"t# � fij ðx0"t#\ x1"t#\ [ [ [ \ x44"t#Ł\ " j � 0^ 2\ 3\ 4#^

fi1"t# � fi1 ðx39"t#\ x30"t#\ [ [ [ \ x44"t#Ł^

fij"t# � fij ðx39"t#\ x30"t#\ [ [ [ \ x44"t#Ł\ " j � 2\ 3\ 4#[ "5#

The functions fij"t# are expressed by middle surface curvatures of actual state[ The right!hand
sides Pi of equations in system "3# are continuous functions of time t in domain 9 ¾ t ³ tcr[ In eqns
"3# load q¹ is a constant with a given value[

Let us assume that

at t � 9] x0 � x"9#
0 \ x1 � x"9#

1 \ [ [ [ \ x44 � x"9#
44 [ "6#

Conditions "6# are the initial conditions of the shell creep problem[
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To solve the system of integral eqns "3# at t × 9 we pass to Cauchy|s problem[ Here\ we employ
the method of di}erentiation with respect to a parameter "see Davidenko\ 0842# taking time t as a
driving parameter[ Since the left!hand sides of eqns "3# are algebraic polynomials\ all the functions
Fi"i � 0\ 1\ [ [ [ \ 44# are continuous throughout the range of arguments xk"k � 0\ 1\ [ [ [ \ 44# and have
continuous partial derivatives of the _rst!order with respect to all the arguments[ Taking time t as
an independent variable we di}erentiate eqns "3# with respect to this variable[ As a result we get a
system of linear equations for the unknown velocities of dimensionless nodal displacements dxk:dt
in actual state]

s
44

k�0

"1Fi:1xk#"dxk:dt# � dPi:dt\ "i � 0\ 1\ [ [ [ \ 44# "7#

or in the matrix form]

A"dX:dt# � Bt\ "8#

where the A "44×44# matrix and the Bt and X "44×0# vectors appear to be]

A �

K

H

H

H

H

H

k

1F0:1x0 1F0:1x1 [ [ [ 1F0:1x44

1F1:1x0 1F1:1x1 [ [ [ 1F1:1x44

[ [ [ [ [ [ [ [ [ [ [ [

[ [ [ [ [ [ [ [ [ [ [ [

1F44:1x0 1F44:1x1 [ [ [ 1F44:1x44

L

H

H

H

H

H

l

^ Bt �

K

H

H

H

H

H

k

dP0:dt

dP1:dt

*

*

dP44:dt

L

H

H

H

H

H

l

^ X �

K

H

H

H

H

H

k

x0

x1

*

*

x44

L

H

H

H

H

H

l

"09#

Let us assume that matrix A is non!singular at all the points of the domain[ Then\ solving system
"8# we obtain]

dX:dt � A−0Bt "00#

Vector Bt determines the contribution to the right!hand side of system "00# from preceding
deformation history[ To calculate its components it is necessary to keep in the data base the
information about displacements obtained throughout the length of time 9−t[

Initial conditions "6# can be written in the matrix form as]

at t � 9] X � X9\ "01#

where X9 � ðx"9#
0 \ x"9#

1 \ [ [ [ \ x"9#
44 Ł is a vector of initial values of nodal displacements in the shell creep

problem which can be found from the solution of elastic!instantaneous problem for the same shell
subjected to the load of a given value[ At t � 9 we have Pi � 9[ Then the system of non!linear
integral eqns "3# becomes a system of non!linear algebraic di}erence equations for elastic dimen!
sionless nodal displacements xk"k � 0\ 1\ [ [ [ \ 44#]

Fi"x0\ x1\ [ [ [ \ x44\ q¹# � 9\ "i � 0\ 1\ [ [ [ \ 44#[ "02#

In this system the load parameter q¹ is an independent variable running from zero to a given value\
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and variables xk are unknown functions of load q¹\ i[e[ xk � xk"q¹#[ The system of eqns "02# obtained
in this way together with its zero initial conditions

at q¹ � 9] x0 � x1 � \ [ [ [ \ � x44 � 9\ "03#

provides a description for the elastic!instantaneous behaviour of the shell[ It can be solved by the
method of di}erentiation with respect to driving parameter q¹ "or w¹ 9# as shown by Ishakov "0882#[
As a result\ we obtain a system of linear equations relative to the unknowns dxk:dq¹\ which in the
matrix form can be expressed as follows]

dX:dq¹ � A−0Bq\ "04#

where A and X are matrix and vector "09#\

Bq � ð−1F0:1q¹\−1F1:1q¹\ [ [ [ \ −1F44:1q¹Ł is vector "44×0#[

Initial conditions "03# are given as]

at q¹ � 9] X � 9 "05#

To determine unknowns x"9#
k "k � 0\1\ [ [ [ \ 44# represented by the X9 vector "01#\ the system of

di}erential eqns "04# at initial conditions "05# is integrated numerically over the load parameter
interval 9 ¾ q¹ ¾ {given value| by means of step!by!step computation "by Euler:RungeÐKutta
methods#[ For details\ interested readers may refer to Davidenko "0842#\ Matevosyan "0863#\
Ishakov "0882#[

A step!by!step computation technique with respect to time can be used to obtain a numerical
solution of the system of eqns "00# under initial conditions "01#[ Thus\ applying Euler|s method
we have the solution in the form]

Xn¦0 � Xn¦DtA−0
n Btn\ "n � 9\ 0\ [ [ [#\ "06#

where Dt is adopted time step[
The components of vector Btn can be found from the following numerical di}erentiation formula]

"dPi:dt#n � ðPi"tn¦0#−Pi"tn#Ł:Dt\ "i � 0\ 1\ [ [ [ \ 44#[ "07#

To calculate Pi"tn¦0# and Pi"tn# expressions "4# can be presented in the _nite di}erence form with
respect to time "see e[g[ Korn and Korn\ 0850^ Wineman\ 0879#[ Consider the length of time 9−t[
It can be divided into equal parts at intervals Dtm � tm¦0−tm"m � 9\ 0\ 1\ [ [ [ \ n−0#[ The boundaries
of the intervals are] t9 � 9\ t0\ t1\ [ [ [ \ tn−0\ tn � t[ Hence\ each integral in expressions "4# can be
written as a sum of integrals over the intervals "tm\ tm¦0#[ Assume that the functions of nodal
displacements xk"t# and\ therefore\ the integrands fij"t#" j � 0\ 1\ [ [ [ \ 4# are piecewise constants\ i[e[
their values remain unchanged within each interval tm ¾ t ¾ tm¦0\ however\ they jump up at the
interval boundaries[ It is essential to note that {left| approximation is employed in this case where
the values of the smooth function under study and the step function substitute coincide on the left
boundary of each interval[ This permits using step!by!step computation beginning from the known
initial value at t9 � 9[ Putting constant values of the integrands for each interval "tm\ tm¦0# outside
the integral sign we get the approximate formulae for calculating Pi]



V[I[ Ishakov : International Journal of Solids and Structures 25 "0888# 3198Ð31123107

P "0#
i "tn# � s

n−0

m�9

fi0"tm# g
tm¦0

tm

R"tn−t# dt\ "i � 0\ 1\ [ [ [ \ 28#^

P "1#
i "tn# � s

n−0

m�9

fi1"tm# g
tm¦0

tm

R"tn−t# dt

−0\ 4 s
4

j�2

fij"tn# s
n−0

m�9

fij"tm# g
tm¦0

tm

R"tn−t# dt\ "i � 39\ 30\ [ [ [ \ 44#[ "08#

Functions fi0\ fi1\ fij\ fij have the form "5#[
Values Pi"tn¦0# and Pi"tn# which appear in "07#\ can be calculated from formulae "08# into which

we substitute the values of nodal displacements xk obtained at all the previous steps of problem
solution with respect to time[ In this case\ to get the _rst approximation P "1#

i "tn¦0#
"i � 39\ 30\ [ [ [ \ 44# we use values of fij calculated at displacement values from the previous step\
i[e[ f−

ij "tn¦0# � f¦
ij "tn#[ Then\ we should iterate to specify P "1#

i "tn¦0# taking new values of fij

calculated at displacements obtained from solution of system "00# in a _rst approximation[ The
iteration is repeated as many times as necessary to achieve a certain speci_ed degree of accuracy[
In the region of convergence two or three iterations are usually su.cient[ The iteration converges
everywhere except for the vicinity of critical time\ where the determinant of matrix A approaches
zero value[ Non!convergence of the iterative process here serves as an indicator suggesting loss of
stability in the physical process[

The components of matrix An in "06# are calculated at the values of displacements given by
vector Xn[ At the _rst step in solving the creep problem matrix A9 is calculated at displacement
values given by the initial conditions of problem "01#[ If load q¹ is taken as a driving parameter in
solving the elastic!instantaneous problem "02#\ A matrices in the systems of equations for solving
the elastic!instantaneous problem "04# and creep problem "00# must have the same form "09#[
Therefore\ when the load reaches the given value\ at the end of elastic solution and at the _rst step
in solving the creep problem\ the numerical values of A matrices will be equal to each other because
they are calculated at the same values of displacements "01#[ We proceed from one problem to the
other continuously by changing the driving parameter "q¹ for t# and vector Bq for Bt in the right!
hand side of the system of equations[ Both problems can be solved within a uni_ed calculation
process[ If the given load q¹ ³ q¹cr\ matrix A9 of the _rst step in solving creep problem is obviously
a non!singular one[ This allows us to do the _rst step in solving problem "06#\ followed by the next
steps[

In integration of system "00# it may happen\ in the course of time\ that velocity of displacements
dX:dt increases unboundedly\ which is regarded\ according to the adopted criterion\ as the loss of
stability in creep[ With bounded damped creep of material this may occur when det A : 9\ i[e[
when matrix A becomes singular[ The components of displacements determined by solution "06#
will be increasing unboundedly at that point[ This instant will correspond to critical time tcr[ If
q¹ � q¹cr\ it is obvious that det A9 � 9 and tcr � 9[

The solution of the system of eqns "00# by Euler|s method has the _rst order of error[ If greater
accuracy is required\ a mulitstep Adams method can be applied in conjunction with multipoint
approximation of derivatives "dPi:dt#n "see e[g[ Korn and Korn\ 0850#[ The initial piece of the
sought!for solution can be found through formulae "06# and "07#[ It should be noted\ however\
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that the adopted accuracy of solution must be consistent with the accuracy of relaxation function
determined experimentally[ The rise of accuracy in solution cannot compensate an inaccuracy in
input datas[ Therefore with the requirement of greater accuracy for solution it is necessary to
require that for relaxation function\ in sense of the exact description by it of a material behaviour
in time[

3[ Results and discussion

Consider some results of calculations for hypar!shells[ For linearly viscoelastic material of the
shell the relaxation function\ following the data in Arutynyan "0841#\ is de_ned as]

R"t−t# � kg expð−g"0¦k#"t−t#Ł\ "19#

where k � 1[424\ g � 9[92 d−0[ Poisson|s ratio is n � 9[1[ The curvature parameter for the hypar!
shell is taken as k¹ 01 � 39\ 79\ 059^ the sti}ness parameter for edge elements a0 � 09\ 099[ Con!
sideration has been given to perfect and imperfect shells[ The geometrical initial imperfections are
taken as two elliptical dents in the upper quadrants of the shell[ Their centres coincide with the
centres of the upper quadrants[ The axes of the dent ellipse are assumed to be] a along the diagonal
of the shell\ 9[6a across it[ Along the axes of the ellipse the dent has the form of a single half!way
sinusoid with amplitude wia in its centre[ As shown by Ishakov "0882#\ such initial irregularities
have the greatest e}ect on reduction of critical load on the elastic shell[ To obtain the initial
conditions "01# the elastic!instantaneous problem is solved by means of a step!by!step computation
procedure with driving parameters q¹ or w¹ 9 using RungeÐKutta|s method[ Euler|s method is applied
in solving the creep problem[ Depending on the length of the time interval in question the step Dt
is taken to be in the range of 9[64Ð09 days[

Figure 1 shows the characteristic graph of the time dependence of de~ection at the shell centre
w¹ 9 in creep as an example of a shell with parameter k¹ 01 � 39[ For comparison the perfect and
imperfect shells have been calculated in creep with the same initial elastic de~ections at the shell
centre w¹ 9[ The vertical dashÐdot lines on the graph show critical time tcr "days#[ As seen from the
graph\ the velocity of de~ection increases unboundedly upon reaching the critical time\ which is
regarded as loss of stability in creep according to the adopted criterion[ This point is characterized
by snapping of the shell[ Reduction of the load leads to a delay in the snapping moment occurrence[
As the load decreases below as certain level\ the calculation fails to detect the phenomenon of loss
of stability within the observable time interval\ since the increase in de~ection is slowing down
owing to damping of creep deformation[ Thus\ at the load q¹ � 08[1 the calculations with time
interval of 599 days show no symptoms of approaching critical state[ Similar curves w¹ 9−t are
obtained for the other values of k¹ 01[

Figure 2 illustrated the e}ect of the edge elements compressibility in critical time[ As seen from
the graph\ this e}ect is rather small[

Figure 3 shows the graph of load value q¹ vs critical time tcr for shells with di}erent values of
curvature parameter k¹ 01[ First\ consider perfect shells "continuous lines#[ The snapping moment
for a given load is seen to depend on the shell curvature[ Given the curvature\ with increasing tcr
the function q¹ "tcr# decreases monotonically\ approaching asymptotically a certain level q¹ � q¹�

cr [
The levels of load q¹ � q¹�

cr \ shown in Fig[ 3\ can be taken as lower limits which q¹ tends to reach
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Fig[ 1[ Dependence of de~ection at shell centre on the time in creep[ Continuous lines are for the perfect shell\ dashed
lines are for the imperfect shell at w¹ ia � 9[14[ Shell parameters are] k¹ 01 � 39\ a0 � 099[

Fig[ 2[ Dependence of de~ection at shell centre on the time in creep for di}erent a0\ values[ Shell parameters are] k¹ 01 � 79\
w¹ ia � 9\ q¹ � 299[
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Fig[ 3[ {Load!critical time| curves for hypar!shells[ Continuous lines are for the perfect shells\ dashed lines are for the
imperfect shells at w¹ ia � 9[14[

with tcr : �[ Load q¹�
cr can be considered as critical load for an outlying time moment[ At load

q¹ ¾ q¹�
cr the shell is stable in the half!in_nite time interval ð9\ �#[ At load q¹ × q¹�

cr the stability must
be estimated in the _nite time interval ð9\ t#\ during which the load is applied[ The shell is considered
stable in the time interval ð9\ t# if tcr × t[

For imperfect shells "dashed lines in Fig[ 3# the character of the curves q¹ "tcr# remains the same[
With increasing tcr the absolute gap in loading between the curves for perfect and imperfect shells
narrows[

Figure 4 shows transformation of the perfect hypar!shell surface in the process of creep near the
critical state[ The lines represent equal increments in de~ections from the point of loading till the
one near the critical moment[ Creep buckling dents develop mostly in the upper corner zones[ This
shape of buckling is similar to the primary buckling shape of identical elastic shell subjected to
uniformly distributed load "Ishakov\ 0882#[

4[ Conclusions

Creep buckling of ~exible shallow hyperbolic paraboloid shells made of linearly viscoelastic
material is accompanied by snapping when critical time is reached[ As this point the velocity of
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Fig[ 4[ Transformation on a perfect hypar!shell surface in creep[ Shell parameters are] k¹ 01 � 059\ a0 � 099^ q¹ � 0053[54^
t:tcr � 9[75[

de~ections becomes in_nitely large[ With bounded damped creep of material for each curvature
value there exists a load at which critical time increases unboundedly[ It can be taken as critical
load for an outlying time moment[ If the given load is less than critical load for an outlying time
moment\ the shell is stable in the half!in_nite time interval ð9\ �#\ otherwise its stability should be
estimated at the _nite time interval ð9\ tcr#[

The approximate numerical method of solution suggested here may be applied in case of
multistage loading of the shell[ Switching from elastic to creep problems and vice versa at each
stage can be performed by changing the driving parameters and vectors B in the right!hand side
of the system of equations[ The initial conditions for each stage in solving the problem are
determined by the results of the last step in the previous solution[
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